csrR, a Paralog and Direct Target of CsrA, Promotes Legionella pneumophila Resilience in Water

نویسندگان

  • Zachary D. Abbott
  • Helen Yakhnin
  • Paul Babitzke
  • Michele S. Swanson
چکیده

UNLABELLED Critical to microbial versatility is the capacity to express the cohort of genes that increase fitness in different environments. Legionella pneumophila occupies extensive ecological space that includes diverse protists, pond water, engineered water systems, and mammalian lung macrophages. One mechanism that equips this opportunistic pathogen to adapt to fluctuating conditions is a switch between replicative and transmissive cell types that is controlled by the broadly conserved regulatory protein CsrA. A striking feature of the legionellae surveyed is that each of 14 strains encodes 4 to 7 csrA-like genes, candidate regulators of distinct fitness traits. Here we focus on the one csrA paralog (lpg1593) that, like the canonical csrA, is conserved in all 14 strains surveyed. Phenotypic analysis revealed that long-term survival in tap water is promoted by the lpg1593 locus, which we name csrR (for "CsrA-similar protein for resilience"). As predicted by its GGA motif, csrR mRNA was bound directly by the canonical CsrA protein, as judged by electromobility shift and RNA-footprinting assays. Furthermore, CsrA repressed translation of csrR mRNA in vivo, as determined by analysis of csrR-gfp reporters, csrR mRNA stability in the presence and absence of csrA expression, and mutation of the CsrA binding site identified on the csrR mRNA. Thus, CsrA not only governs the transition from replication to transmission but also represses translation of its paralog csrR when nutrients are available. We propose that, during prolonged starvation, relief of CsrA repression permits CsrR protein to coordinate L. pneumophila's switch to a cell type that is resilient in water supplies. IMPORTANCE Persistence of L. pneumophila in water systems is a public health risk, and yet there is little understanding of the genetic determinants that equip this opportunistic pathogen to adapt to and survive in natural or engineered water systems. A potent regulator of this pathogen's intracellular life cycle is CsrA, a protein widely distributed among bacterial species that is understood quite well. Our finding that every sequenced L. pneumophila strain carries several csrA paralogs-including two common to all isolates--indicates that the legionellae exploit CsrA regulatory switches for multiple purposes. Our discovery that one paralog, CsrR, is a target of CsrA that enhances survival in water is an important step toward understanding colonization of the engineered environment by pathogenic L. pneumophila.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

csrT Represents a New Class of csrA-Like Regulatory Genes Associated with Integrative Conjugative Elements of Legionella pneumophila.

UNLABELLED Bacterial evolution is accelerated by mobile genetic elements. To spread horizontally and to benefit the recipient bacteria, genes encoded on these elements must be properly regulated. Among the legionellae are multiple integrative conjugative elements (ICEs) that each encode a paralog of the broadly conserved regulator csrA. Using bioinformatic analyses, we deduced that specific csr...

متن کامل

The Legionella pneumophila genome evolved to accommodate multiple regulatory mechanisms controlled by the CsrA-system

The carbon storage regulator protein CsrA regulates cellular processes post-transcriptionally by binding to target-RNAs altering translation efficiency and/or their stability. Here we identified and analyzed the direct targets of CsrA in the human pathogen Legionella pneumophila. Genome wide transcriptome, proteome and RNA co-immunoprecipitation followed by deep sequencing of a wild type and a ...

متن کامل

Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication.

Legionella pneumophila can replicate inside amoebae and also alveolar macrophages to cause Legionnaires' Disease in susceptible hosts. When nutrients become limiting, a stringent-like response coordinates the differentiation of L. pneumophila to a transmissive form, a process mediated by the two-component system LetA/S and the sigma factors RpoS and FliA. Here we demonstrate that the broadly co...

متن کامل

Investigation of Legionella Pneumophila bacteria in hospital water supply systems

Introduction: Legionella Pneumophila bacteria is known as one of the most important nosocomial infections and the most common cause of death in patients. This study was aimed to identify Legionella Pneumophila bacteria in hospital water supply systems. Material and Methods: This descriptive cross-sectional study was performed to identify Legionella pneumophila in hot and cold-water systems of i...

متن کامل

Legionella pneumophila CsrA regulates a metabolic switch from amino acid to glycerolipid metabolism

Legionella pneumophila CsrA plays a crucial role in the life-stage-specific expression of virulence phenotypes and metabolic activity. However, its exact role is only partly known. To elucidate how CsrA impacts L. pneumophila metabolism we analysed the CsrA depended regulation of metabolic functions by comparative 13C-isotopologue profiling and oxygen consumption experiments of a L. pneumophila...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015